

Guide to the Polyurethane Foam

www.olmo-group.com

Table of contents

06	Introduction	
07	Historical background	
09	From Oil to Polyurethane Foam	
10	Production of OLMO's polyurethane foams	
11	Foam characteristics General Information Polyether Polyester Physical characteristics Chemical resistance Hydrolysis-induced ageing Oxidation-induced ageing Light-induced ageing Physiologic characteristics Resistance to microbes Thermal stability Gas emission from polyurethane combustion Chloro-fluoro-hydrocarbons (CFC) Inflammability	11 12 12 12 12 12 12 12
15	Resistance of PU-Polyether to chemical agents	
17	Resistance of PU-Polyester to chemical agents	
19	Test methods for assessing physical-mechanical properties Density Indentation hardness Compression load deflection Tensile strength Compression set Dynamic fatigue Resilience Air permeability	19 19 20 21 21 22 22
23	Processing of flexible PU-foams	

27 Other processing methods

Introduction

The **Polyurethane foam** is a cell-structured material containing a high percentage of **air**.

Polyurethane foams are divided into two main categories: rigid and flexible foams. Rigid foams are specifically used in heat insulation in building sector, in the electrotechnical industry and in packaging.

This short guidebook introduces polyurethane foam properties and a special attention is paid to flexible polyurethane foam (to which Olmo foams belong).

The flexible polyurethane foam is the result of a chemical synthesis and has been industrially produced since 1952.

Historical background

3
of this ponse
per
Эr
tly
yether
duced
ר
per }r tly duc h

Worldwide polyurethane market

The grafic refers to the whole polyurethane family

From Oil to Polyurethane Foam

The following tables give a brief description of the main production processes. Besides the main raw materials isocyanates and polyols some others chemical products are necessary like stabilizers, surfactants, catalysts, dyes and propellants. They improve the quality of the final products and allow to obtain PU-foams with a wide range of density, softness, mechanical resistance, elongation and elasticity.

Production of Polilatex® and Elast® foams

Each component is directly taken from the storage tanks by high pressure pumps.

The dosage accuracy is very important in this critical phase in order to guarantee a uniform product. At **Olmo** the input of each component is controlled by high precision instruments in real time and the values are constantly recorded.

The components are mixed in a special head and uniformly distributed on a special paper belt placed on a conveyor. The initial liquid layer with a thickness of 0.5-1.5 cm expands and becomes a uniform slab which is more than one meter high.

The gas necessary for the expansion of the resin is developed during polymerization. This reaction is exothermic, i.e. heat is developed. The polymerization is achieved after few meters from the mixing head outlet. The formulation is properly adjusted so that a constant quality of the foam is granted.

The production of polyurethane foam is a chemical and physical process, therefore the following physical-synergic factors have to be taken into account:

- Temperature of raw materials
- Gas released and dispersed in raw materials
- Atmospheric pressure and humidity
- Room temperature

These parameters are additional elements that can affect product quality.

The honeycomb arrangement and the thin foam cell walls give the material softness, elasticity, stability and an extraordinary lightness and permeability to air and humidity. These characteristics make polyurethane foam an ideal material for padding. At Olmo the 60-meter-foam-blocks are automatically stocked with a completely computerized system. The further processing usually takes place at least 72 hours after production because the foam needs first 24 hours to stabilize.

Foam characteristics

GENERAL INFORMATION

Flexible PU-foams can be divided into two main families: polyether and polyester polyurethanes.

Polyether

- Polilatex[®] conventional foams;
- Elast[®] HR foams, i.e. High Resilient;
- Casanova[®] low resilience viscoelastic foams.

Polyester

- Conventional foams on polyester base;
- Porous foams similar to sea sponges.

PHYSICAL CHARACTERISTICS

Here the main differences between PU polyether and polyester foams:

- Polyether foams are very elastic, whereas polyester foams have a higher shock resistance;
- Polyester foams can be intrinsically flame-laminable;
- Polyester foams better resist to organic solvents;
- Polyether foams better resist to hydrolysis;
- Both foams have excellent heat insulation properties.

The coefficient of thermal conductivity of soft polyurethane foam is about 0.04 Kcal/h. Moreover, the good sound absorption values at medium and high frequencies have to be pointed.

Olmo's Polyurethane foams are produced in different hardness and densities (from 20 to 110 kg/m3).

Humidity absorbency is approximately 2% (at 90% of air relative humidity). The humidity absorbency depends on the molecular structure of the foam and may vary during the production cycle. Dynamic and static stress soften both polyether and polyester foams, whereas polyester is more deformable but less lacerable.

The following rule can be take into account in optimal processing conditions: the higher the density, the lower the deformability.

RESISTANCE TO CHEMICAL AGENTS

The tables on page 15/18 report the behaviour of polyurethane foams versus different chemical agents. Polyether-based foams have a good resistance to acidic and alkaline media whilst polyester-based foam better resist to almost all organic solvents.

HYDROLYSIS-INDUCED AGEING

The term hydrolysis refer to the scission of a molecule when it comes in contact with water. The humidity contained in the air condensates into water and may give rise to hydrolysis. The relative humidity of air increases by raising the temperature. Polyester-based foams resist less to hydrolysis compared with polyether-based foams.

OXIDATION-INDUCED AGEING

Both polyether and polyester foams are oxygen-resistant.

LIGHT-INDUCED AGEING

Polyurethane foams become yellow by effect of the light (both daylight and artificial light). The change in colour is due to the oxidation of specific molecular groups contained in the foam. The yellowing caused by light is lower in polyester foam than in polyether one. The heavier the foam, the smaller the colour change; however, this does not

affect the physical-mechanical characteristics of the foam.

PHYSIOLOGIC CHARACTERISTICS

Polyurethane foam causes neither dermatosis nor skin irritation. Specific tests showed that polyurethane foam does not cause damage even if accidentally swallowed.

RESISTANCE TO MICROBES

Thorough tests showed that in rooms with a high humidity certain moulds and bacteria may damage the foam.

To avoid this drawback, bacteriostatic substances such as Sanitized[®]additives can be added to the foam.

THERMAL STABILITY

Polyurethane foam can be used at temperatures up to 100°C without substantial change of the physical properties.

Wash cycles at 90°C obviously mean a big thermal, mechanical and chemical stress, but quality materials resist with only slight changes in volume. If the foams contain flame retardants it has to be considered that these additives tend to migrate. Therefore their fire resistance characteristics can be strongly affected.

GAS EMISSION FROM POLYURETHANE COMBUSTION

As well other natural products (wood, wool and leather), carbon monoxide, nitric oxide and carbon dioxide are released during foam combustion. However, the amount of harmful substances released during foam combustion does not exceed that of the above mentioned natural materials.

Olmo polyurethane foams are entirely produced without chloro-fluoro-hydrocarbons (CFC), sign that the products are environmental-friendly.

INFLAMMABILITY OF POLYURETHANE FOAM

Polyurethane foam is inflammable like the majority of organic materials. The use of additives and raw materials specifically modified during foam processing helps to reduce inflammability. Olmo products Elast[®], Elast[®] Performance FR, Polilatex[®] RC, Polilatex[®] CM, Polilatex[®] HT, Ecoelast meet the highest international standards concerning fire prevention.

Resistance of PU-Polyether to chemical agents

Nr.	Chemical agent	Concentration	Tensile Strength		Compression	Compression Load	Volume variation		Notes
			humid	dry	set	Deflection	humid	dry	
1	Acetone			\bullet	0	0		0	
2	Ammonium hydroxide	10%	0	0	O	0	ullet	0	
3	Ammonium hydroxide	2%	0	0	O	0	ightarrow	0	
4	Formic acid	conc.		Ð		\bullet	\bullet		
5	Aniline			Ð					Practically destroyed
6	Ethyl alcohol conc.	conc.		\bullet		\bullet	\bullet	0	
7	Ethyl alcohol	50%		ullet	O	O	ullet	0	
8	Ethyl acetate		•	ullet	O	O		0	
9	Ethyl chloride		•	ullet		\bullet	Ð	0	
10	Ether		\bullet	ullet	O	ullet	\bullet	0	
11	Gasoline with 10% Benzol			\bullet	0	O	\mathbf{O}	\bullet	
12	Benzol		•	0	O	\bullet	•	0	
13	Clorophen A 60		•	\bigcirc	_		0		
14	Chlorobenzene		•	•		0		0	
15	Glycolmonoethylether			Ο	J	\bullet	J	0	
16	Chromic acid	10%						-	
17	Dekalin			•	J	O		\mathbf{O}	
18	Desavin		J	J	0	J	J	U	
19	Dimethylformamide								
20	Dibutyiphtalate				0				
21	Diesel DIN 51601				0	G	G	G	Ma II andra a
22	Giacial acetic acid	F 0/	\mathbf{O}	Ö		J		0	reliowing
23	Diluited acelic acid	5% 5%	\mathbf{O}	0		G	0		
24	Diluited Hydrolluonic acid	0% 20%				0	\mathbf{O}		Light vollowing
20	Formaldehyde	30%	G	G	0	0		0	Light vellowing
20 07	Clutalina	1,5%				0	$\tilde{\mathbf{O}}$		Light yellowing
21	Giuloinia Timbor oil								Strong vallowing
20	Potossium bydrovido	0000					$\tilde{\mathbf{O}}$	$\tilde{\mathbf{O}}$	Strong yellowing
20	Potassium hydroxide	10%		$\overline{\mathbf{O}}$			$\tilde{\mathbf{O}}$	Ő	
31	Slaked lime (satured)	saturated				\mathbf{O}	$\tilde{0}$	Ő	
32	M cresol	3410/4160						\circ	
33	Animal oil		$\overline{\mathbf{O}}$						
34	Linseed oil		Ŏ	\tilde{O}		$\widetilde{\mathbf{G}}$	Ŏ	Õ	Strong vellowing
35	Lianin			\cup	Ŭ	Ŭ	0	Ŭ	Strong yonowing
36	Seawater		$\tilde{\mathbf{O}}$		\cap	\cap		\cap	
37	Methylethylketone		ĕ	ĕ	ĕ	ŏ	ŏ	ŏ	
38	Mineral oil		Õ	Ō	Õ	Õ	Ŏ	Õ	
39	Smooth caustic soda	conc.	õ	Õ	Ŏ	ŏ	ŏ	õ	
40	Smooth caustic soda	10%	ŏ	Ō	Ō	Ō	ŏ	ŏ	
41	Smooth caustic soda	1%	Ô	0	Ŏ	O	Ô	Ô	
42	Sodium hypochlorite	1%	ŏ	ŏ	ŏ	ĕ	ĕ	ŏ	Browning
			-	-		-	-	-	S S

TENSILE STRENGTH:

- Unchanged
- Worsening of 10-30%
- Worsening of 30-50%
- Worsening of more than 50%
- Sample destroyed

COMPRESSION SET:

- Unchanged
- Increase of 2-3 times
- Increase of 3-5 times
- Increase of more than 5 times
- Sample destroyed

NOTE

The information contained in these tables has to be considered as indication. The foams have to be tested in the real usage conditions.

Nr.	Chemical agent	Concentration	Tensile : humid	Strength dry	Compression set	Compression Load Deflection	Volume humid	variation dry	Notes
43 44 45 46 47 48 49 50 51 51	Sodium chloride Sodium chloride Sodium chloride Sodium carbonate Sodium carbonate Wetting agents (nekal BX) Nitrobenzene Oleic acid Paraffin oil Phonol solution	saturated 20% 5% 20% 2% 2%				000000000000	000000000000000000000000000000000000000		Yellowing Strong yellowing
53 54 55	Phosphoric acid Phosphoric acid Phosphoric acid	conc. 10% 2%	• • • • • • • • • • • • • • • • • • • •	•		•		00	
56 57 58 59	Hydrochloric acid Hydrochloric acid Hydrochloric acid Nitric acid	conc. 10% 5% conc.		•	•	•	00	0	
 60 61 62 63 64 65 66 67 68 60 	Nitric acid Sulfuric acid Sulfuric acid Sulfuric acid Sweat solution DIN 53957 Sweat solution DIN 53957 Carbon disulphide Soap solution Sodium carbonate solution	10% conc. 10% 3% alkaline acid 2% 10%					0000000000	00000000	
69 70 71 72 73 74	Carbon tetrachloride Gasoline DIN 51636 Turpentine oil Toluene 50% gasoline								Yellowing
75 76 77 78 79 80 81 82	10% ethanol 10% ethanol Trichloroethylene Tricresylphosphate Distilled water Hydrogen Peroxide Hydrogen Peroxide Softening Xylene Citric acid (10%)	10% 3% 10%							Light yellowing Light yellowing

COMPRESSION LOAD DEFLECTION:

⊖ Unchanged

• Decrease of 10-20%

Decrease of 20-50%

Decrease of more than 50%

• Sample destroyed

VOLUME VARIATION:

⊖ Swelling of 0-5%

• Swelling of 5-30%

• Swelling of 30-100%

Swelling of 100-200%

• Swelling of more than 200%

Resistance of PU-Polyester to chemical agents

Nr.	Chemical agent	Chemical agent	Concentration	Tensile Strength		Compression	n Load Deflection	Volume variation		Notes
			humid	dry	set	humid		dry		
1	Acetone		•	0	0	O	0	0		
2	Ammonium hydroxide	10%	O	ullet	O	O	0	0		
3	Ammonium hydroxide	2%	\bullet	0	O	O	0	0		
4	Formic acid	conc.		Ð						
5	Aniline			ullet		\bullet	•	\bullet		
6	Ethyl alcohol conc.	conc.		0	\bullet	O	\bullet	0		
7	Ethyl alcohol	50%		0		O	\bullet	0		
8	Ethyl acetate		•	ullet		O	\bullet	0		
9	Ethyl chloride		•	0		\bullet	Ð	0		
10	Ether		0	0	O	0	ullet	0		
11	Gasoline with 10% Benzol		0	0	\bullet	0	ightarrow	0		
12	Benzol			O	G	O	0	0		
13	Clorophen A 60			\bigcirc		-	\mathbf{O}	O		
14	Chlorobenzene			0		0	\mathbf{O}	O		
15	Glycolmonoethylether	100/		Ο	G	U	\bigcirc	0		
16	Chromic acid	10%					\sim	\sim		
17	Dekalin			G			\mathbf{O}	\mathbf{O}		
18	Desavin Directly dia macanaida			J	0	J	U	U		
19	Dimeinyiiormamide				\square					
20	Dibutyipitalate					U	G	G		
21	Classial aportio apid								Light vollowing	
22	Diluited acetic acid	5%						\mathbf{O}	Light yellowing	
20	Diluited acelic acid	5%					$\tilde{\mathbf{O}}$	\mathbf{O}		
25	Formaldebyde	30%	$\overline{\mathbf{O}}$				$\tilde{\mathbf{O}}$	\tilde{O}	Light vellowing	
26	Formaldehyde	1.5%	\circ	\tilde{O}			$\tilde{\mathbf{O}}$	\tilde{O}	Light yellowing	
27	Glutolina	1,070	ŏ	õ	Ŏ	ĕ	Õ	õ	Light yonothing	
28	Timber oil		Õ	Ŏ	Õ	Ŏ	Õ	Õ	Yellowing	
29	Potassium hvdroxide	conc.	Ŏ	-	Ŭ	<u> </u>	Ŭ	Ũ	. ene trang	
30	Potassium hydroxide	10%	Ŏ							
31	Slaked lime (satured)	saturated	Ŏ	J	\bullet		0	0		
32	M. cresol									
33	Animal oil		0	0	0	0	0	0		
34	Linseed oil		0	0	\bullet	0	0	0	Yellowing	
35	Lignin		0	0	O	0	0	0		
36	Seawater		0	0	O	٠	0	0		
37	Methylethylketone			0	0	0	\bullet	0		
38	Mineral oil		0	0		0	0	0		
39	Smooth caustic soda	conc.								
40	Smooth caustic soda	10%				-				
41	Smooth caustic soda	1%		•		0	0	O O		
42	Sodium hypochlorite	1%	U	O		O	0	0	Browning	

TENSILE STRENGTH:

- Unchanged
- Worsening of 10-30%
- Worsening of 30-50%
- Sample destroyed

COMPRESSION SET:

- Unchanged
- Increase of 2-3 times
- Increase of 3-5 times
- Increase of more than 5 times
- Sample destroyed

NOTE

The information contained in these tables has to be considered as indication. The foams have to be tested in the real usage conditions.

Nr.	Chemical agent	Concentration	Tensile S humid	Strength dry	Compression set	Compression Load Deflection	Volume humid	variation dry	Notes
43 44 45 46 47 48 49 50 51 52 53 54	Sodium chloride Sodium chloride Sodium chloride Sodium carbonate Sodium carbonate Wetting agents (nekal BX) Nitrobenzene Oleic acid Paraffin oil Phenol solution Phosphoric acid Phosphoric acid	saturated 20% 5% 20% 2% 2% 8% conc. 10%	000000000000000000000000000000000000000	000000000000000			0000000000000000	000000000000000000000000000000000000000	Yellowing
 55 56 57 58 59 60 61 62 63 64 65 66 67 68 69 70 71 72 73 74 	Phosphoric acid Hydrochloric acid Hydrochloric acid Hydrochloric acid Nitric acid Nitric acid Sulfuric acid Sulfuric acid Sulfuric acid Sweat solution DIN 53957 Sweat solution DIN 53957 Carbon disulphide Soap solution Sodium carbonate solution Seed oil Carbon tetrachloride Gasoline DIN 51636 Turpentine oil Toluene	2% conc. 10% 5% conc. 10% 3% alkaline acid 2% 10%	$\bigcirc \bigcirc $	$\bullet \bullet \circ \circ \circ \bullet \circ \bullet \bullet$			$\bigcirc \bigcirc $	0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0 0	
/4	Mixture of volatile: 40% benzene		O	O	O	•	\bullet	0	
75 76 77 78 79 80 81 82	Trichloroethylene Tricresylphosphate Distilled water Hydrogen Peroxide Hydrogen Peroxide Softening Xylene Citric acid (10%)	10% 3% 10%					0	00000000	Light yellowing

COMPRESSION LOAD DEFLECTION:

- ⊖ Unchanged
- Decrease of 10-20%
- Decrease of 20-50%
- Decrease of more than 50%
- Sample destroyed

VOLUME VARIATION:

- ◯ Swelling of 0-5%
- Swelling of 5-30%
- Swelling of 30-100%
- Swelling of 100-200%
- Swelling of more than 200%

Test methods for assessing physical-mechanical properties

In order to assess the characteristics of foams, the following physical values are determined:

DENSITY

Density is the foam weight per volume unit and is expressed in g/l or kg/m3. After having cut the skin away, the sample block is cut into several layers perpendicular to the growth axis. The mean of their densities gives the density of the block. The following standard methods are used to assess density:

UNI 6349 TOLERANCE ± 5% DIN 53420

ISO 1855

INDENTATION DEFLECTION

Indentation deflection or sag strength rate is the load that causes the sinking of an indentor (with specific dimensions and form) into the foam specimen for 25%, 40% and 65% of its thickness. The specimen, that is bigger than the indentor, is placed in the middle of the dynamometer's platform. The load is maintained for 30 seconds every time the specimen is compressed by 25, 40 and 65% of its thickness, then the sag resistance force is measured. The results are

given in Newton (N), as 25, 40 and 65% sag strength or indentation deflection. The sag factor is the ratio between the indentation deflection at 65% and 25% and is a reliable index for assessing comfort. The higher the value, the higher the comfort. Conventional polyethers show sag factors around 1.9 whilst ELAST foams (i.e. High Resilience) around 2.9 (see pictures). The highlighted dashed section corresponds to hysteresis: the lower the hysteresis the higher the elasticity. The standard methods used to assess indentation are:

BS 4443 Pt.2 M.7 DIN 53576/B TOLERANCE ± 15% UNI 6353 ISO 2439

COMPRESSION LOAD DEFLECTION

Compression load deflection is the pressure (in Kilo Pascal=kPa) needed to compress the initial thickness of a specimen up to 40% by an indentor with specific dimension and form.

The specimen is a parallelepiped $100 \times 100 \times 50$ mm; the sample is accurately measured and the area that undergoes the compression is determined.

The sample is placed in the middle of the instrument platform and is compressed up to 40% of its initial thickness. The required pressure is measured by the instrument.

The result is expressed in kPa.

kPa = 1000 Pa kPa = 10,2 g/cm² kPa = 0,1 N/cm²

The standard methods used to assess compression load deflection are:

BS 4443 Pt.1 M.5 DIN 53577 TOLERANCE ± 15% UNI 6351 ISO 3386

TENSILE STRENGTH AND ELONGATION AT BREAK

Tensile strength is given in kPa or kg/cm² and represents the ratio between the peak strength required to break the sample and the area of its transversal section.

Elongation at break is the percentage change between the initial length and the length at break. The specimen must be obtained by die cutting from sheets with a thickness of 10-15 mm.

The specimen is placed between dynamometer's terminals and undergoes a constant traction. At break point, the peak strength and the length obtained are measured calculating the tensile strength (kPa) and elongation at breakage (%). The standard methods used to assess tensile strength are:

BS 4443 Pt.1 M.3

DIN 53571

COMPRESSION SET

Compression set is the loss of thickness caused by compressing the foam under particular conditions.

The specimen is a parallelepiped with a square base and a thickness of 50 mm.

It's placed between two parallel plates and is compressed up to 50, 75 and 90% of its initial thickness. Then the sample it is placed into an oven with air circulation at 70°C for 22 hours. Afterwards it is extracted from the compressing plates and left to rest for 30 minutes. The thickness is now measured. The loss of thickness at 50, 75 and 90% compression is given in percentage. The standard methods used to assess compression set are:

BS 4443 Pt.1 M.6A

UNI 6352

DIN 53572

DYNAMIC FATIGUE

Dynamic fatigue is in percentage loss of thickness and compression load deflection of a sample after being compressed

by 75% of its initial value for 75.000 cycles with a frequency of 60 cycles per minute. First of all, compression load deflection and initial thickness of the sample are determined. After 75.000 compression cycles and a recovery time of 30 minutes, thickness and load compression deflection are measured again. The results are given in percentage loss of thickness and

cycles

percentage loss of compression load deflection. The method to assess dynamic fatigue is:

UNI 6356 Pt.2

RESILIENCE

Resilience is the ratio between rebounding and starting height of a ball with preset dimensions and weight, when falling from a given height, bounces after having perpendicularly hit the material surface considered.

The method to assess resilience is:

UNI 6357

AIR PERMEABILITY

Resilience and hardness of a foam also depend on the size and opening of the cells.

Other values being equal, larger and more opened cells, (i.e. connected to one another), are needed to obtain more elastic foams.

A particular instrument measures the flow difficulty (load loss) of the air through a foam sample.

Small and closed cells cause substantial load losses, with subconsequent low air permeability. Large and open cells cause only a slight load loss which means a high degree of air permeability.

Processing of flexible PU-foams

Soft polyurethane foam is automatically cut with belt blades that are constantly sharpened. The main types of cut are shown below.

CUTTING TECHNIQUES

Horizontal cut

Vertical cut

Shaped cut (horizontal)

Shaped cut (vertical)

Die-cut

Milling

Cut for continuous profiling

- 1. Foam
- 2. Press
- 3. Profiling utensil
- 4. Blade
- 5. Finished article after profiling

Slab stock
 Pre-cut
 Peeling
 Blade

Rools (peeling)

- 1. Conveyor belt
- **2.** Foam
- 3. Blade
- 4. Foam rolls after cutting

Rools (loop)

Other type processing

Flame lamination (special glueing process) consists in melting by flame a low thickness of the PU-foam that acts as a perfect glue for fabrics and/or other materials.

Glue coating consists in glueing the polyether foam with fabrics or other materials through an appropriate glue.

The content of this brochure can't be considered legally binding, as the company Olmo studies, develops and constantly improves its production processes in order to supply the customer with the most advanced and functional products available in the specific sector of polyurethane foams.